
 LOGSTASHER - VOL1
METRICS,
METRICS,
METRICS

BY LOGSTASHER TEAM

For B and C -

DEFINITELY NOT A FOREWARD BECAUSE NOBODY READS
FOREWARDS

I’m not sure why I chose metrics for a starting point in Volume 1. It’s probably because I heard that
Peter Drucker quote at one point in time: “You can’t improve what you don’t measure”. Another reason is
that I dedicated a significant amount of my own personal time to messing around with metrics. Part of
that was my own curiosity. A larger part was feeling the burn after putting out a fire at $dayjob. For those
with experience in the industry that last line will sound all too familiar. For those of you new to the
game, there will be fires. I hope they are few and I hope you persevere and prevail and hit that eureka
moment when you solve the problem and save your ass.

There should not have to be a “eureka!” moment though. If the systems are designed well enough and
the right metrics are collected, and the right people can interpret those metrics correctly, the cause of the
fire should be clear as day. That should be the aim anyway. Maybe that’s how things go down at the
FAANGs of the world. For the rest of us that dwell in “too few people, too little time”, that goal may
seem further away.

If the reader is familiar with Amazon’s “Well Architected Framework” , they will know that metrics 1

align with Performance Efficiency (PE) pillar in the framework and that Monitoring is listed as a Best
Practice under the PE pillar. Hopefully we can all agree that metrics are important. Having finally agreed,
we are left with a question: “WHAT DO?!”. What do we measure? How do we measure it? Do we need
more tooling ? Where do the metrics go? Do I have to look at spreadsheets? “If I wanted to do math I
would have been an accountant”.

Here is where we get to the good news / bad news scenario. Are your organization’s compute
resources currently residing in one of the big cloud providers? If yes: good news, many of the baseline
metrics (from a Virtual Machine / host perspective) are much easier to implement/obtain/monitor/alert
on. If no: bad news. Your org may use something like Solarwinds to do baseline monitoring of hosts, or
may not be doing any such monitoring at all and you may / may not have access to this data (sigh… le
combat est réel).

For what it’s worth, I consider the following to be baseline metrics in that they are 1) offered by most
if not all cloud providers / monitoring software vendors, 2) are relevant at the host / Operating System
level, and 3) are relevant regardless of whatever applications we may be tasked with maintaining /
owning / monitoring.

- CPU Utilization -Memory Utilization -Network Utilization -Disk Utilization

Cloud providers and monitoring software vendors will have some means of relaying that baseline
information and granularity will vary. For example, AWS “Disk*” metrics include things like
“DiskReadOps”, “DiskWriteOps”, “DiskReadBytes”, and “DiskWriteBytes”. On the other hand, Azure metrics 2

 AWS WELL ARCHITECTED FRAMEWORK: https://aws.amazon.com/architecture/well-architected/?wa-lens-whitepapers.sort-1

by=item.additionalFields.sortDate&wa-lens-whitepapers.sort-order=desc

 AWS EC2 Metrics:https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/viewing_metrics_with_cloudwatch.html2

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/viewing_metrics_with_cloudwatch.html

include things like “Available Memory Bytes”, “Data Disk IOPS consumed percentage”, and “Data Disk Target
Bandwidth”. 3

That’s good and well, but those metrics may not always give you the insight you need. I don’t think
any lone metric can. Consider the following (since this is Logstasher after all): how relevant are
“DiskRead/WriteOps” to your Logstash node in the following scenario? - The node only has 1 TCP input - The node only has 1 Elasticsearch output. - The node does not use persistent queues. - The node only writes normal application logs to /var/log/logstash - These logs are purged weekly. - The node has 500G of available disk (for the sake of the example, consider the node to not have any

funky partition layouts, everything is mounted at /). -Disk utilization has only ever peaked at 30G

The answer is “not very”. This brings us to application metrics. Logstash is a Java application and thus
runs on the Java Virtual Machine (JVM). As such it’s possible to have completely fucked your Logstash
or JVM settings and never notice it from a baseline (cpu / memory / disk / network) perspective. WOMP
WOMP WOMP. Fortunately, with some discipline, practice, and curiosity we can do better to protect
ourselves against this.

This issue of LOGSTASHER doesn’t go too deep on the JVM front but there is a section where we try to
replicate one of Elastic’s examples of an unhealthy Logstash node / JVM from their docs. Some of the 4

examples have mainly application relevance (particularly the syslog section in which everything is
generated on 1 —albeit fairly large— server). “But, but AKCHUALLY in a REAL network…”. Spare us.
We know. We also don’t have massive networks to play with. But we do stumble upon servers from time
to time. We also get a little cloudy (with a lean towards AWS; sorry Azure shills) so we’ve shared some
CloudFormation templates.

The logical progression of each volume will start with small building blocks. From there we will build
in complexity. We have found that this progression reflects reality in the lab as well as in production. We
hope you find this issue useful / enjoyable / interesting. If that is the case, we humbly ask that you leave
us review wherever you happened to pick up this little diddy. This helps us understand what sucked and
what was good. With this understanding we can improve Logstasher and keep doing what we’re doing if
our readers have found it worthwhile.

Thank you for your time,
 - root@logstasher

P.S. My grades in discrete mathematics and stats were shit (but passing), so I’m not even going to
pretend to get all nerdy with the numbers. Do what thou wilt.

 AZURE VM METRICS: https://docs.microsoft.com/en-us/azure/azure-monitor/essentials/metrics-supported#microsoftcomputevirtualmachines3

 TUNING AND PROFILING LOGSTASH PERFORMANCE: https://www.elastic.co/guide/en/logstash/current/tuning-logstash.html4

1. SYSLOG ..7

SYSLOG LAB - 001	 ..7

SYSLOG LAB - 002	 ..18

SYSLOG LAB - 003	 ...24

SYSLOG LAB - 004	 ...33

2. PARTING WORDS ...38

1. SYSLOG

Syslog is a good starting point. Every network device I’ve encountered in an enterprise can ship
syslog. In linux land, it can also be pretty straightforward to configure a host to send syslog to a 5

remote target. Unfortunately most syslog syntax is REALLY bad so if you want well-structured
data you’ll likely spend a lot of time running GROKs or regex against that syslog. Perhaps if you’re

lucky, you’ll be able to offload some of that parsing to say a Filebeat module (for example, the Filebeat
Cisco modules just create an ingest pipeline at the Elasticsearch cluster, and offload all that grokking to
the Elasticsearch nodes).

At the end of the day, pattern matching to extract relevant information is Business As Usual. There are
only two things certain in life… death and using regex against syslog messages. But I digress.

SYSLOG L AB - 001

First, some host meta. Host details for this lab are as follows. -Operating System

-CPU

 Parsing those logs suck. But any data is better than no data. Pretty data is better than “<136>Oct 1 1988 13:37:37 mothership001 ERROR 5

birthd[13] baby inbound….”

$ uname -a
Linux localbox 5.4.0-121-generic #137-Ubuntu SMP Wed Jun 15 13:33:07 UTC 2022

$ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 46 bits physical, 48 bits virtual
CPU(s): 48
On-line CPU(s) list: 0-47
Thread(s) per core: 2
Core(s) per socket: 12
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 63
Model name: Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz
Stepping: 2

 - - - - SNIP - - - -

-MEMORY

-DISK

“THERE ARE ONLY TWO THINGS CERTAIN IN LIFE… DEATH AND USING REGEX
AGAINST SYSLOG MESSAGES.”

As you can see, we have plenty to work with. Now for the logstash meta.
1. Logstash version: 7.17.4
2. Logstash install method: deb
3. Non default JVM settings: heap at 2g

$ free -h
 total used free shared buff/cache available
Mem: 125Gi 38Gi 84Gi 14Mi 3.3Gi 86Gi
Swap: 8.0Gi 0B 8.0Gi

$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop0 7:0 0 55.5M 1 loop /snap/core18/2409
loop1 7:1 0 55.5M 1 loop /snap/core18/2344
loop2 7:2 0 99.5M 1 loop /snap/go/9848
loop3 7:3 0 61.9M 1 loop /snap/core20/1518
loop4 7:4 0 44.7M 1 loop /snap/snapd/15534
loop5 7:5 0 47M 1 loop /snap/snapd/16010
loop6 7:6 0 61.9M 1 loop /snap/core20/1434
loop7 7:7 0 67.2M 1 loop /snap/lxd/21835
loop8 7:8 0 67.8M 1 loop /snap/lxd/22753
loop9 7:9 0 99.4M 1 loop /snap/go/9760
sda 8:0 0 931G 0 disk
├─sda1 8:1 0 1M 0 part
├─sda2 8:2 0 1G 0 part /boot
└─sda3 8:3 0 930G 0 part
 └─ubuntu--vg--1-ubuntu--lv 253:5 0 200G 0 lvm
sdb 8:16 0 931G 0 disk
└─sdb1 8:17 0 931G 0 part
 └─VolGroup01-decometa 253:4 0 931G 0 lvm
sdc 8:32 0 16.4T 0 disk /
sdd 8:48 0 10.9T 0 disk
└─sdd1 8:49 0 10.9T 0 part
 ├─VolGroup03-concroot 253:1 0 30G 0 lvm
 ├─VolGroup03-concsess 253:2 0 1T 0 lvm
 └─VolGroup03-concmeta 253:3 0 9.9T 0 lvm
sde 8:64 0 744.6G 0 disk
└─sde1 8:65 0 744.6G 0 part
 └─VolGroup04-concinde 253:0 0 744.6G 0 lvm

$ grep -E '^-Xm(s|x).g' /etc/logstash/jvm.options
-Xms2g
-Xmx2g

4. Logstash pipeline size: 125 (default)
5. Logstash pipeline workers: 2

IMG001 - A second logstash instance (STRESSOR) is used to generate traffic on the
System Under Test (SUT) and increment the load until we see performance impact.

The base config for the SUT is listed on the next page. We have 1 UDP input on port 5014 (this is
necessary if your main logstash process is running as a non root user) that has some metadata added to
it. The first uses the builtin metrics filter to to track event rates and tag those metrics so we can
segregate them in the output logic. The second filter just tries to run a few groks against the message. 6

The output dumps metric events to /var/log/syslog.metrics.json and sends them to an event rates index,
and ships the regular processed syslog events to a syslog index. We can fire this up and let it run while 7

get the stressor setup. 8

 METRICS FILTER PLUGIN: https://www.elastic.co/guide/en/logstash/current/plugins-filters-metrics.html6

 We don’t cover index configuration here. It’s assumed the reader already knows how to do this.7

 NOTE: the default number of worker threads for UDP input is 2: https://www.elastic.co/guide/en/logstash/current/plugins-inputs-udp.html8

https://www.elastic.co/guide/en/logstash/current/plugins-filters-metrics.html

$ cat /etc/logstash/conf.syslog/syslog.cong
syslog base config
input {
 udp {
 port => 5014
 add_field => {'[logstash][input]' => 'udp5014'}
 add_field => {'[@metadata][index]' => 'syslog-rollover'}
 add_field => {'[logstash][type]' => 'syslog'}
 }
}
metrics filter
filter {
 #### logstash outputs these generated messages as json by default so convert
 json { source => ‘message' }
 mutate { remove_field => 'host'}
 if [logstash][input] == 'udp5014' {
 metrics {
 meter => 'events'
 add_tag => 'metric-syslog'
 }
 }
}
filter {
 if [logstash][type] == 'syslog' {
 grok {
 match => {'message' => '^<%{NUMBER:[syslog][priority]}>%
{GREEDYDATA:therest_001}'}
 tag_on_failure => 'gpf_001'
 }
 if [therest_001] {
 grok {
 match => {'therest_001' => '^%{WORD:[syslog_month]}\s%
{NUMBER:syslog_daynum}\s+%{TIME:syslog_time}\s+%{WORD:syslog_host}\s+%
{GREEDYDATA:therest_002}'}
 tag_on_failure => 'gpf_002'
 }
 }
 }
}
output {
 if 'metric-syslog' in [tags] {
 file {
 path => '/var/log/logstash/syslog.metrics.json'
 }
 elasticsearch {
 hosts => 'localhost:9200'
 index => 'eventrates-rollover'
 user => 'elastic'
 password => 'PASSHERE'
 http_compression => true
 }
 }
 if [@metadata][index] {
 elasticsearch {
 hosts => 'localhost:9200'
 index => '%{[@metadata][index]}'
 user => 'elastic'
 password => 'PASSHERE'
 http_compression => true
 }
 }
}

For the stressor Logstash instance, we’ve download a tarball of Logstash 8.1.3 and extracted that in /

opt/logstas-files resulting in the following tree structure.

Nothing fancy here really. What we need is a simple way to run this second logstash instance, with
variable settings that will generate output to localhost:5014/UDP (where the SUT is listening for our
“syslog” events). We can accomplish this by making a bash script in /opt/logstash-files/logstash-8.1.3/

$ tree /opt/logstash-files/logstash-8.1.3 -L 2 -d
/opt/logstash-files/logstash-8.1.3
├── bin
├── config
├── data
│ ├── dead_letter_queue
│ └── queue
├── jdk
│ ├── bin
│ ├── conf
│ ├── include
│ ├── jmods
│ ├── legal
│ ├── lib
│ └── man
├── lib
│ ├── bootstrap
│ ├── pluginmanager
│ ├── secretstore
│ └── systeminstall
├── logs
├── logstash-core
│ ├── lib
│ └── locales
├── logstash-core-plugin-api
│ └── lib
├── modules
│ ├── fb_apache
│ └── netflow
├── tools
│ └── ingest-converter
├── vendor
│ ├── bundle
│ └── jruby
└── x-pack
 ├── build
 ├── ci
 ├── lib
 ├── modules
 ├── qa
 ├── spec
 └── src

40 directories

bin that’ll run logstash from the command line with our desired settings. Version one of this is on the
next page. Apologies in advance for the one-liner config, I know it looks ugly, but I’ve never been a fan of

the whole escaped line breaks thing in bash scripts, so here we are.

This script allows us to screw with the throughput settings a little bit. GEN_THREADS is relevant to
the generator input only, while BATCH_SIZE and WORKERS you’ll recognize as being relevant to the
output. We set path.data to /tmp/data so the stressor doesn’t try to use any default paths and have a
conflict with the existing data path of the logstash process that is already running. In it’s current state,
the process will continue to generate events until we send SIGINT to the process (CTRL-C). For now we

can start it with 1 generator thread, a batch size of 125 (default) and 2 workers.
After letting this setup run for a while we can check how many events get ingested into elasticsaerch

over a 15 minute window by viewing the syslog index in Kibana. In the screenshot on the next page you’ll
see that the hit count is about 8.5 Million. With a little math we can get our 1 minute event rate:
(8,500,000 / 15 / 60 = 9444.44 events per minute / 60 = 157.4 events per second). Not bad… or is it? Is
that abnormally low? Is that high? Don’t know…. Need more data.

#!/bin/bash
GEN_THREADS=$1
BATCH_SIZE=$2
WORKERS=$3

FAKEMESSAGE="<161>Jul 2 13:37:00 localbox logstasher[1337]: LOGSTASHER VOLUME ONE
- METRICS,METRICS,METRICS"

/opt/logstash-files/logstash-8.1.3/bin/logstash -e "input { generator { message =>
'$FAKEMESSAGE' threads => $GEN_THREADS }} output { udp { host => 'localhost' port
=> '5014' } }" --pipeline.batch.size=$BATCH_SIZE --pipeline.workers=$WORKERS --
path.data=/tmp/data

$./stressd.sh 1 125 2
 - - - - SNIP - - - -
[2022-07-02T01:37:49,592][INFO][logstash.javapipeline][main] Starting
pipeline {:pipeline_id=>"main", "pipeline.workers"=>2, "pipeline.batch.size"=>125,
"pipeline.batch.delay"=>50, "pipeline.max_inflight"=>250,
"pipeline.sources"=>["config string"], :thread=>"#<Thread:0x54c7f73 run>"}
[2022-07-02T01:37:50,217][INFO][logstash.javapipeline][main] Pipeline Java
execution initialization time {"seconds"=>0.62}
[2022-07-02T01:37:50,238][INFO][logstash.javapipeline][main] Pipeline started
{"pipeline.id"=>"main"}
[2022-07-02T01:37:50,292][INFO][logstash.agent] Pipelines running
{:count=>1, :running_pipelines=>[:main], :non_running_pipelines=>[]}

IMG002 - With the base syslog config and base stressor, we’re seeing about 8.5 Million
events in a 15 minute window.

Recall that the config is also dumping event rate metrics to syslog.metrics.json. We can check this file

and see if those numbers reflect our loose math from earlier.

$ tail -n 20 /var/log/logstash/syslog.metrics.json | jq .events.rate_1m | sort -rn
9336.487809147882
9330.968342568867
9323.966401722813
9298.897997136572
9273.906749372241
9261.868007578634
9239.000771878627
9237.72091719613
9234.704919180995
9230.136011461975
9229.35448946115
9193.648130609885
9186.280887468307
9159.608373713842
9151.16202781002
9123.019196637968
9077.222430805858
9053.51695542433
9049.716496527128
9027.75137823632

As it turns out, the loose math is retty accurate. The last 20 metrics (sampled every 5 seconds by
default) are all about 9K and some change which means our loose math wasn’t far off. But our base SUT
config was also shipping events to the cluster. What do these event rates look like over time? Below is a
timelion expression and visualization used to see events.rate_1m over time.

IMG003 - In this timelion visualization we see our event rate spike rapidly (when we first
started the stressor script) and then level off at around 9K+ for the metric events.rate_1m.
This indicates that our throughput max has been reached with the current settings.

Let’s record our current testing results thus far.

CAN WE GO HIGHER!??? Let’s find out…. What happens if we bump the number of input threads on
the stressor to 2?!!! Womp the graph looks the same. As you’ll see on the next page..

STRESS:BAT
CH

STRESS:WR
KRS

STRESS:INP
UT
THREADS

SUT:BATCH SUT:WRKRS SUT:INPUT
THREADS

SUT:VAR? RATE 1m
(nearest
100)

1 125 2 1 125 2 2 9400

.es(index=eventrates*,q=‘tags:metrics-syslog',metric=max:events.rate_1m)

With a slight adjustment (bumping the number of stressor input threads to 2) the event rate
of the SUT does not deviate significantly from the previous levels.

 We can record a new entry on our table.

 YAAAAAAAAAAWWWN…and that’s how metrics go dear readers. Let’s cheat a little bit… What
happens if we bump the workers on our SUT to 8? Alas… we begin to get somewhere. Now the event
rate has climbed closer to 38,100 minus the small blip in the graph where I realized I had left the stressor
at 2 input threads while changing the SUT workers to 8 (a big no no). This is a big no no because we
should only change one variable at a time when performing the tests. Otherwise we invite chaos.

STRESS:BAT
CH

STRESS:WR
KRS

STRESS:INP
UT
THREADS

SUT:BATCH SUT:WRKRS SUT:INPUT
THREADS

SUT:VAR? RATE 1m
(nearest
100)

1 125 2 1 125 2 2 9400

2 125 2 2 125 2 2 9400

IMG004 - With the SUT workers at 8, the event rate has climbed to 38,100. We increased
throughput by a factor > 4.
 Sweet we got higher. Can you take me higher, dear reader? More will be revealed… but first. A riveting 9

new entry for our data table.

 At this point we can keep increasing the SUT worker count until we see ceiling be reached with the
event rate, however we go about it is left as an exercise for the reader. Could be we keep doubling the
workers. Could be we tie workers to CPU by percentage (i.e. workers == 50% of CPU == 50% of 48 ==
24). Whatever’s clever. You can review the graph on the next page which is what we saw when we
bumped SUT workers to 48 (the number of cpus).

“CAN YOU TAKE ME HIGHER? TO A PLACE WHERE BLIND MEN SEE?” - CREED

STRESS:BAT
CH

STRESS:WR
KRS

STRESS:INP
UT
THREADS

SUT:BATCH SUT:WRKRS SUT:INPUT
THREADS

SUT:VAR? RATE 1m
(nearest
100)

BASE-1 125 2 1 125 2 2 9400

2 125 2 2 125 2 2 9400

3 125 2 1 125 8 2 38100

 "Higher" is a song by American rock band Creed. It was released on August 31, 1999, as the lead single from their second studio album, Human 9

Clay. The song became the bands breakthrough hit as it was their first song to reach the top ten on the US Billboard Hot 100 where it peaked at
number seven in July 2000. It spent a total of 57 weeks upon the survey, the longest stay for any Creed song on the Hot 100. "Higher" also became
the band's second chart-topping hit on rock radio as it topped both the Modern Rock and Mainstream Rock charts, for a then-record of 17 weeks

https://en.wikipedia.org/wiki/Rock_music
https://en.wikipedia.org/wiki/Creed_(band)
https://en.wikipedia.org/wiki/Human_Clay
https://en.wikipedia.org/wiki/Human_Clay
https://en.wikipedia.org/wiki/Billboard_Hot_100
https://en.wikipedia.org/wiki/Modern_Rock_Tracks
https://en.wikipedia.org/wiki/Mainstream_Rock_Tracks

IMG005 - To the far left of the graph is the event rate seen (~53,000) with SUT workers
set to 48.

SYSLOG L AB - 002

 By now we’ve finagled with the event rate a little bit and seen how we can increase this rate by
bumping the workers of our SUT pipeline.But how was the application doing during all this? We don’t

$ curl localhost:9600/_node/stats 2>/dev/null | jq .jvm
{
 "threads": {
 "count": 169,
 "peak_count": 235
 },
 "mem": {
 "heap_used_percent": 25,
 "heap_committed_in_bytes": 8303607808,
 "heap_max_in_bytes": 8303607808,
 "heap_used_in_bytes": 2110012816,
 "non_heap_used_in_bytes": 245239048,
 "non_heap_committed_in_bytes": 287936512,
 "pools": {
 "young": {
 "committed_in_bytes": 2290614272,
 "max_in_bytes": 2290614272,
 "peak_max_in_bytes": 2290614272,
 "peak_used_in_bytes": 2290614272,
 "used_in_bytes": 1879176360
 },
 "old": {
 "committed_in_bytes": 5726666752,
 "max_in_bytes": 5726666752,
 "peak_max_in_bytes": 5726666752,
 "peak_used_in_bytes": 207727432,
 "used_in_bytes": 207727432
 },
 "survivor": {
 "committed_in_bytes": 286326784,
 "max_in_bytes": 286326784,
 "peak_max_in_bytes": 286326784,
 "peak_used_in_bytes": 103185384,
 "used_in_bytes": 23109024
 }
 }
 },
 "gc": {
 "collectors": {
 "young": {
 "collection_time_in_millis": 75408,
 "collection_count": 10763
 },
 "old": {
 "collection_time_in_millis": 40179,
 "collection_count": 68
 }
 }
 },
 "uptime_in_millis": 17685914
}

know because we didn’t look. We need some better visibility into the JVM, and we can go about this a
number of ways. If we just want to see the metrics at a given point in time, that’s easy enough.

I don’t know about you, but that doesn’t mean shit to me. Save for jvm.mem.heap_used_percent which tells
me at the time that command ran, only 25% of the heap was used. Great. But what’s the trend? If only
there were a way to poll this data at specified intervals and then ship it so it can be analyzed and
visualized. For this we will use metricbeat’s logstash-xpack module to ship the metrics to elasticsearch.

 If you’ve been using logstash for a while you may be familiar with xpack monitoring. TL;DR xpack/
X-Pack was originally a “set of closed-source features that extend the Elastic Stack”. In this case we’re 10

talking specifically about monitoring. X-Pack monitoring data gets dumped into the cluster as a hidden
index with a naming convention like .monitoring-<es|logstash|kibana>-<major_version_number-<?mb>-
<YYYY.mm.dd>-NNNNNN. A typical architecture would look like this.

IMG006 - A best practice monitoring architecture will keep stack monitoring data separate
from prod data. In the diagram above monitoring cluster is smaller because this is typically
the case as monitoring data often requires less resources than your prod data lake.
 The above segregates monitoring data from prod data. Why? Well, what happens if our prod data
cluster experiences as an outage? RIP, there goes our monitoring data for the rest of the stack. One saying

 OPEN X-PACK: https://www.elastic.co/what-is/open-x-pack10

https://www.elastic.co/what-is/open-x-pack

that has stuck with me over the years is: “You don’t use the tool to monitor the tool”. Seems sensible
enough to me. Duly noted. Moving on.

 We won’t cover setup of the metricbeat logstash-xpack module. It’s assumed the reader has some
familiarity with beats and how to configure them. If this is not the case, Elastic’s documentation is
solid. From the earlier lab you’ll recall that we modified the SUT workers to 48 (1:1 with the number of 11

cpus). Shortly after that I setup the metricbeat module to begin collecting stats.

IMG007 - Logstash monitoring stats visualized shortly after increasing the pipeline workers
to match the number of CPUs
 On the top left graph you’ll note the sudden spike of the event rate after the change to the number
of workers was completed. On the top right, you’ll notice the JVM Heap graph. Which we’ll take a closer
look at On the next page. The event rate spike hit’s its peak / norm at 07:00 on the graph. Thereafter we
see that the Used Heap metric (blue line) starts to exhibit a more frequent climb an drop (commonly
referred to as a sawtooth pattern; stable, mostly consistent pattern). The drop indicates increased free
JVM heap space caused by Garbage Collection. From various engagements with Elastic support
Engineers, I can say simply that sawtooth == GOOD/OK. If you want to dive deep on Java Garbage
collection, I’m going to copycat Elastic and basically say “RTFM” at Oracle. If you can suffer through that
and gain some insight, you’re a better human than I. 12

 METRICBEAT - LOGSTASH-XPACK MODULE: https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-module-logstash.html11

 ORACLE: https://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html12

https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-module-logstash.html
https://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html

IMG008 - Closer view of the JVM Heap status from IMG007. Note the sawtooth pattern.
 How does this compare with the “Tuning and Profiling Logstash Performance” blurb? Curious 13

what you think of it. To me the two can’t really be compared. For starters, the blurb referenced in the
footnote uses VisualVM to visualize heap usage. Secondly, the graphs therein are only somewhat different
from each other. Refer to the next two samples.

IMG009 - BAD JVM PERFORMANCE (according to the article in [12]).

 TUNING AND PROFILING LOGSTASH: https://www.elastic.co/guide/en/logstash/current/tuning-logstash.html13

https://www.elastic.co/guide/en/logstash/current/tuning-logstash.html

 In this example the claim is that “GCs [sic] very close together”, but note per the screenshot
they’re only looking at like 3 minutes worth of data? I’m puzzled as to why anyone would want to use
such a brief sample window to relay a point about garbage collection. The confusion doesn’t stop there
either. Look at what is given for the GOOD case.

IMG010 - GOOD JVM PERFORMANCE (according to the article in [12]).
 To me, if a Garbage Collection event is denoted by a drop on the blue line in the graph on the right,
it seems to me that “GCs [sic] very close together” is more true in what is claimed in [12] to be the
good/green case, not the red? Let’s take a look at some better data. Recall that earlier we saw solid event
rates from logstash (50K/sec) and healthy (sawtooth) pattern of the JVM metrics in IMG007 and
IMG008. In this case the logstash syslog pipeline is basically running in a “default” state (though the
workers were explicitly set to 48 to match cpu, but if we didn’t do this, the workers would default to
number of cpus) with a batch size of 125. Shortly after I took those screenshots and continued writing, I
increased the batch size to 500 and look what happened.

IMG011 - Logstash metrics with SUT pipeline batch size set at 500 (over previous 125,
which is the default settings)

 We have a clear deviation from the sawtooth pattern shortly after this change was made. CPU
utilization increased a few percent, event latency remained mostly the same, and our event rate dropped
to a norm of about 5000 less events per second. Below is a closer look at the JVM Heap graph.

IMG012 - JVM Heap of SUT Logstash after batch size increase to 500. The used heap no
longer exhibits a steady climb but instead has become chaotic. No sawtooth == BAD.

 I suppose the gist is the same as the (likely old / stale / forgotten) example in [12]; batch size,
workers and other factors can effect Logstash JVM performance. But UMMMOOOOONNNNN ELASTIC!
Why leave that vague example up when we can use other Elastic products to greater effect? What the

heck even is VisualVM? Anyways. Now that we have logstash monitoring enabled and have gone over 14

effects of pipeline settings on the JVM, we can tinker a bit more in the next lab.

SYSLOG L AB - 003

Before we get too deep, a word of caution. Learn from our mistakes. If you go googling around for
“LOGSTASH UDP PERFORMANCE” you’ll come across a number of blog posts or forum discussion
discussing modifications to linux sysctl settings. While it’s ultimately the technology owner’s decision 15

as to how they want to fiddle with their logstash systems, we recommend not doing so without solid
evidence to back up your case (like the metrics above). Those event rates we saw above are nowhere near
what we see in a production environment with the following characteristics. 16

- 4 x logstash nodes at 16 cpu 32G ram
- Syslog data being pushed from numerous systems through load balancers that load balance across
those 4 logstash nodes
- 24hr event counts > 1 Billion across multiple syslog sources.
- Event rate hovers between 1-2000/sec, some spikes up to 3-4000/sec for a given pipeline.
Your network may be different, but unless you’re pretty positive that your pipeline’s event rate is being

pushed to it’s limit (the only way we see how to really test this is using a similar setup, except with an
external stressor node that can generate fake events), it’s best not to get too into the weeds tinkering
with some settings you found on a blog. That being said, lets get into the weeds tinkering with some
settings we found on a blog.

Recall earlier that we created a little wrapper for our stressor node… this is good and all but it’s a little
tedious / annoying to run the stressor process in the foreground. What’s better is running it as a service
so we can start/stop/restart it at will. To do this we’ll piggyback off of the existing logstash service and
make directory /opt/stress for our configs to live in. The high level steps are listed below 17

- make directory /opt/stress
- copy the existing logstash.service to /opt/stress/stressd.service
- edit the service file, changing the description, user, group. Delete the EnvironmentFile entries (runs
fine without them) and modify the ExecStart entry to point to the logstash bin in our tar folder. Set the
batch (-b) size to 125 (not technically necessary, but a good reminder of default) and workers to 2, data
path to /tmp/data and log directory to /tmp/stressd.log. Set the config path to /opt/stress/18

stress.conf (we’ll create it later).
- fire in the hole
The stress.service and sample commands are on the next page.

 No offense to the Visual VM project owners also no offense to the original author, it is often the case that the only documentation that exists for 14

some weird rabbit hole is the version 1 document lol (CTRL-F project owners, very fine print, bottom of page, in gray on gray…): https://
visualvm.github.io/download.html

 INCREASE UDP INPUT PLUGIN PERFORMANCE: https://discuss.elastic.co/t/increase-udp-input-plugin-performance/130798/315

 Granted, things aren’t exactly equal, for example the production syslog config has 1000s of lines. 16

 LINUX FILESYSTEM HIERARCHY: https://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/opt.html17

 Technically this was a fat finger on my part, and I left it in (i.e. i usually name actual log files somenamehere.log). Yes I know /var/log/ is 18

probably more appropriate than temp, but 16TB disk YOLOOOOOOOOOOOOOOOOOO

https://discuss.elastic.co/t/increase-udp-input-plugin-performance/130798/3
https://visualvm.github.io/download.html
https://visualvm.github.io/download.html

The only thing left after that is to flesh out the config, which we can copy pasta from our wrapper and
breakout into multiple lines like we are sane people. This is pasted on the next page for reference.

$ mkdir /opt/stress && cd /opt/stress
$ locate logstash.service
/etc/systemd/system/logstash.service
/etc/systemd/system/multi-user.target.wants/logstash.service
$ cat /etc/systemd/system/logstash.service
[Unit]
Description=logstash

[Service]
Type=simple
User=logstash
Group=logstash
Load env vars from /etc/default/ and /etc/sysconfig/ if they exist.
Prefixing the path with '-' makes it try to load, but if the file doesn't
exist, it continues onward.
EnvironmentFile=-/etc/default/logstash
EnvironmentFile=-/etc/sysconfig/logstash
ExecStart=/usr/share/logstash/bin/logstash "--path.settings" "/etc/logstash"
Restart=always
WorkingDirectory=/
Nice=19
LimitNOFILE=16384

When stopping, how long to wait before giving up and sending SIGKILL?
Keep in mind that SIGKILL on a process can cause data loss.
TimeoutStopSec=infinity

[Install]
WantedBy=multi-user.target
$ cp /etc/systemd/system/logstash.service . && mv logstash.service stressd.service
$ ls
stressd.service
$ cat stressd.service
[Unit]
Description=stressd - generates output to logstash node for testing

[Service]
Type=simple
User=root
Group=root
ExecStart=/opt/logstash-files/logstash-8.1.3/bin/logstash "--path.config" /opt/
stress/stress.conf -b 125 -w 2 --path.data=/tmp/data -l /tmp/stressd.log
Restart=always
WorkingDirectory=/
Nice=19
LimitNOFILE=16384

When stopping, how long to wait before giving up and sending SIGKILL?
Keep in mind that SIGKILL on a process can cause data loss.
TimeoutStopSec=infinity

[Install]
WantedBy=multi-user.target

The current state of the SUT is as such.

- pipeline.workers: 48 (default based on system cpu)

- pipeline.batch.size: 125 (default)

- UDP input with default settings

- receive buffer bytes: 106496 (operating system default)

- queue size: 2000

With these settings in place we have the following observed behavior (from previous)

- healthy JVM sawtooth pattern

- event rate hovering around 40K/sec

- CPU utilization exhibiting a sawtooth (matching the JVM perf) with low of 20% and high of < 30%

Recall from [14] there are some linux OS settings that people commonly jack with to try and increase
performance of the UDP input plugin. The commands for editing these are pasted below as well as the
current settings

input {
 generator {
 message => '<161>Jul 2 13:37:00 localbox logstasher[1337]: LOGSTASHER
VOLUME ONE - METRICS,METRICS,METRICS'
 threads => 2
 }
}
output {
 udp {
 host => 'localhost'
 port => '5014'
 }
}

sudo sysctl -w net.core.somaxconn=2048
sudo sysctl -w net.core.netdev_max_backlog=2048
sudo sysctl -w net.core.rmem_max=33554432
sudo sysctl -w net.core.rmem_default=262144
sudo sysctl -w net.ipv4.udp_rmem_min=16384
sudo sysctl -w net.ipv4.udp_mem="2097152 4194304 8388608”

$ sysctl -a | grep -E 'net.core.(somaxconn|netdev_max_backlog|rmem_max|
rmem_default)|net.ipv4.udp_(rmem_min|mem)' | sort
net.core.netdev_max_backlog = 1000
net.core.rmem_default = 212992
net.core.rmem_max = 212992
net.core.somaxconn = 4096
net.ipv4.udp_mem = 3081390 4108522 6162780
net.ipv4.udp_rmem_min = 4096

So how do they compare?

- net.core.somaxconn on our system actually 2x that specified in [14].

- net.core.netdev_max_backlog on our system is < 1/2 of [14]

- net.core.rmem_max on our system is 1/157 of that in [14].

- net.core.rmem_default on our system only 49152 units less than [14]

- net.ipv4.udp_rmem_min on our system is 1/4 of [14]

- net.ipv4.udp_rmem_min value 0 on our system is > than [14], value 1 is < [14] by about 90K, and value
2 is < [14] by about 2 Million.

Hmm what do? Which setting should we change first ? The somaxconn setting can probably be ignored
entirely, since it’s larger on our system. Let’s start with netdev_max_backlog and let things run in their 19

current state and see if we see any clearly visible changes in the logstash performance. Remember to note
the previous settings on your system so you can restore them. Also note the time of our change as you

should only be concerned with metrics after this time if you’re monitoring what impact if any this change
had to performance. We’ll also want many metrics, the more the better (requires time, resources), but 20

this may not always be possible to do. Looking at a 30 minute window of metrics (recall change was at
57m pass the hour) before and after the change, we can say that after the change, event rate did climb a
little bit. Looking at the larger window of the JVM heap (sawtooth pattern takes about 50m to repeat
itself), we see no drastic change to the pattern. It may have begun smoothing out a little bit more.

 An event rate increase of about 1K is not that impressive when we’re already seeing 38-40K/sec
(1000 / 38000 = 0.0263 = 2.63 %). If you look back in the metrics at 2hrs ago or greater, you can
hardly notice it at all.

 RTFM: $ man listen: If the backlog argument is greater than the value in /proc/sys/net/core/somaxconn, then it i silently truncated to that value. 19

Since Linux 5.4, the default in this file is 4096; in earlier kernels, the default value is 128. In kernels before 2.4.25, this limit was a hard coded
value, SOMAXCONN, with the value 128.

 From contextual experience, sysctl settings take effect immediately on the host system and do not require a restart of affected services (logstash 20

for example).

$ sysctl -w net.core.netdev_max_backlog=2048 && date
net.core.netdev_max_backlog = 2048
Sat 09 Jul 2022 08:57:03 PM UTC

IMG013 - Events Received rate climbing slightly after the change to
net.core.netdev_max_backlog

IMG014 - JVM heap graph may have gotten smoother after the change but we’ll have to
wait an hour or more to see if this is one off or not.
 There’s no wow effect thus far with this change. But we can let it ride and ignore it for a while to
see what gives. Based off first impressions, it seems like our primary impact may have been a cleaner JVM
sawtooth metric, but we’ll have to observe the stats over a few hours to see whether or not this was a one
off occurrence. Another interesting test will be to be to drop this setting to something absurdly low as
well as something absurdly high and measure impact. At an absurdly low number (max backlog of 10), I
would anticipate that our events received rate drops significantly due to inbound UDP messages filling
the backlog and then having no place to go. At the absurdly high end (let’s say max backlog 102400) 21

I’m unsure what we could see. Perhaps backup in the Recv-Q of our UDP listening port (5014). Refer to
the example on the next page.

 This is purely speculation. The relationship is not that simple; we’re talking about the interrelationship between the Network Interface Card 21

(NIC) and how the Linux kernel is setting limits on a backlog which is likely set per cpu or something. We’ll dig in more based on our findings.

On an actively listening UDP port receiving a lot of traffic, it’s normal to see the “Recv-Q” increment and
drain as traffic gets processed by the application (Logstash). A symptom of trouble at the application side
would be a “Recv-Q” value that appears pinned in that it increments up to a system defined limit, and
hovers at that number, indicating that the application cannot keep up with the load enough to drain the
queue. 22

 Let’s check back on the metrics after our sysctl change. At this point I’m getting impatient, and the
next iteration of the sawtooth indicates that the smoothing was a one off scenario.

IMG015 - Looking at at ~2.5 hour window of metrics (change executed at 13:57 on these
graphs) there are no drastic changes in performance, however we do notice that during a
given 50 minute window (time it takes for JVM sawtooth pattern to emerge) that the Events
Received Rate and JVM Heap Used metric have an inverse relationship.

 If you’re curious what you’re UDP receive queues are doing on linux, can watch them with: watch -n 1 netstat -anu22

$ netstat -anu
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
udp 0 0 0.0.0.0:38193 0.0.0.0:*
udp 0 0 127.0.0.1:46517 127.0.0.1:46517 ESTABLISHED
udp 0 0 0.0.0.0:60907 0.0.0.0:*
udp 0 0 127.0.0.53:53 0.0.0.0:*
udp 213760 0 0.0.0.0:5014 0.0.0.0:*
udp 0 0 0.0.0.0:5353 0.0.0.0:*
udp 0 0 0.0.0.0:8125 0.0.0.0:*
udp6 0 0 :::42733 :::*
udp6 0 0 fe80::266e:96ff:fe3:546 :::*
udp6 0 0 :::5353 :::*

 While our event rate during this window was mostly boring, we happen to notice that our event
rate trends downward during the same time frame that JVM Heap Used is trending upwards. Let’s finagle
with the net.core.netdev_max_backlog setting again, this time dropping it to a low number (10). We’ll be
sure to note the time of this change again (10:39PM UTC == 3:39PM LOCAL).

Almost 5 hours has passed and we see this trend in the metrics.

IMG016 - Looking at at ~5 hour window from when we dropped the max backlog setting;
JVM Used Heap sawtooth is essentially the same, but we see the event rate appears more
sporadic, but still having an inverse relationship to the JVM metric. The events received
rate stays between 37000 and 38000 for the most part.

 No major effect that we can clearly see. It would be curious to see if packets were dropped though.
Recall that our stressor is shipping to localhost:5014/UDP. There are multiple ways to check the number
of dropped packets for a given interface but we’ll just use ifconfig.

Here we see the dropped count is 127117. But unfortunately we didn’t think to take a look at this before.
Is this a normal number? Is this number increasing? We can monitor this live on one terminal screen
with the following one liner

$ sysctl -w net.core.netdev_max_backlog=10 && date
net.core.netdev_max_backlog = 10
Sat 09 Jul 2022 10:39:32 PM UTC

$ ifconfig lo
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
 inet 127.0.0.1 netmask 255.0.0.0
 loop txqueuelen 1000 (Local Loopback)
 RX packets 2371013101 bytes 882926794773 (882.9 GB)
 RX errors 0 dropped 127117 overruns 0 frame 0
 TX packets 2371013101 bytes 882926794773 (882.9 GB)

$ watch “ifconfig lo | grep ‘RX errors’| grep -oE ‘dropped [0-9]+’”

If we watch this for a bit we should see that the number is indeed incrementing by about 20 every 2
seconds. sample below.

IMG017 - Using the watch command to run ‘ifconfig lo’ every 2 seconds and process the
output with grep shows that our dropped packets on the lo interface are incrementing.

 From another terminal we can set the max backlog setting back to 1000 and keep an eye on our
watch job. If indeed a low net.core.netdev_max_backlog setting is causing dropped packets, we should see
that the number of dropped packets remains stable after we change the setting back.

IMG018 - Here we see that after setting net.core.netdev_max_backlog back to its default
setting on our system (1000), the number of dropped packets stops incrementing and no
drop packets are seen over 1 minute window, when previously we were dropping about
10 packets a second.

Thus far we can conclude the following.

1. Increasing net.core.netdev_max_backlog from system default of (1000) to 2048 had no clearly discernible
impact on performance.

2. Dropping net.core.netdev_max_backlog to a value too low (10) can result in dropped packets at the NIC,
but also had no clearly discernible impact on performance (although surely there was a non-zero
impact, as dropped packets == missed events).

3. Increasing this setting would probably only be warranted if we were seeing dropped packets on an
interface where Logstash has a listening port

 Before attempting to mess with more system settings. Let’s tinker with settings of the input plugin
itself. There are several settings that stand out as likely candidates that could impact performance. 23

- queue_size: This is the number of unprocessed UDP packets you can hold in memory before packets
will start dropping (default 2000). This is an unlikely candidate for increasing performance unless we
note packets being dropped under normal conditions (although it’s unclear where the drop is
occurring… at the NIC? or at the application side, when the NIC considers it a done deal, i.e. would
otherwise not increment the dropped packet counter?)

- receive_buffer_bytes: The socket receive buffer size in bytes. If option is not set, the operating system
default is used. The operating system will use the max allowed value if receive_buffer_bytes is larger
than allowed. Consult your operating system documentation if you need to increase this max allowed
value (this usually shows up in /var/log/logstash/logstash-plain.log on the “UDP listener started” line,
for example on our system logstash reports the value 106496; which is odd because this should
technically be the value of net.core.rmem_default but as we saw earlier, that value is 212992 which is 2x
greater)

- workers: Number of threads processing packets (default 2). This seems like the most logical candidate
for performance impact, since we’ve already seen earlier how increasing pipeline workers (handles filter
and output) can dramatically increase performance (as measured by event rate).

First we’ll take a stab at workers and see if this has any impact. We’re interested in major increases, so
let’s go beyond doubling this (to 4) and bump it to 24 which is 50% of our available cpu. The change was
executed at Sun 10 Jul 2022 04:06:07 AM UTC. After an hour or so we have some clearly noticeable
differences in the metrics.

IMG019 - After increasing the UDP input workers count from 2 (default) => 24 (50% of
cpu) we have a steady JVM Heap sawtooth but our events received rate has decreased
from previous rates, now hovering around 36000 and exhibiting the same inverse
relationship to JVM usage in that the event rate trends downward.

 So we degraded our event rate slightly by increasing the UDP workers to 24 (50 % of cpu). The new
normal at that setting is around 36K/sec. Again, not very drastic but worth noting. We can move on to

 LOGSTASH UDP INPUT: https://www.elastic.co/guide/en/logstash/current/plugins-inputs-udp.html23

https://www.elastic.co/guide/en/logstash/current/plugins-inputs-udp.html

see what the behavior is when dropping the UDP input workers setting to 1 (decrease by 50% from
default). The change executed at Sun 10 Jul 2022 05:26:50 AM UTC yields the following.

IMG020 - After decreasing the UDP input workers count to 1 (50% of default) we have a
steady JVM Heap sawtooth and our events received rate has become considerably
unstable, peaking near 36K then trending downward over about the next 50 minutes.

 In this state, the max event rate is still near 36K however the inverse relationship to the JVM Heap
Used metric is much more pronounced. At this point, we’re seeing diminishing returns with each of our
little tweaks, but we are at least making some interesting observations with regard to how these little
tweaks impact the event rate and how the event rate of the UDP input is tied to the JVM’s used heap
under different conditions.
 One point we have not yet considered is that we may be hitting the maximum amount of stress we
can apply using 1 logstash stressor node process. The good news is that we’ve already done the leg work
of creating stressd.service, so it will be easy to make copies of that service file, tweak them to use different
data directories and logging directories, then push those to /etc/systemd/system and start up a second or
third stressor at will. This will allow us to further determine where our bottleneck is. If the bottleneck is
at the SUT configuration, then we should see no significant change in the event rate with 2x or 3x the
stress; perhaps we would even see degraded performance. If the bottleneck is indeed the amount of stress
we can get from 1 logstash stressor process, then when we turn up additional processes we should see
increased event rates. Let’s go over this in the next lab.

SYSLOG L AB - 004

In this lab we will attempt to achieve a near 3x event rate (150K/sec). To do this we’ll set up 2
additional stressd services called stressd-2.service and stressd-3.service. We’ll start off with our SUT pipeline
settings as such:

- UDP input will have default settings (no queue tweaks, no buffer tweaks, no worker tweaks)
- pipeline.batch.size will be 125 (default)
- pipeline.workers will be 48 (# of system cpu)

We’ll make a symlink to the /opt/logstash-files/logstash-8.1.3/bin/logstash file. This is something we
should have done earlier because it helps us keep the service file a little more readable by shortening the
path.

IMG021 - Here we make a symlink in /opt/stress that points to the logstash script to keep
our service files more readable.

 Now that we have our symlink in place we can copy the stressd.service file and make edits to it. Below is
what we have for stressd-2.service. You can see we have multiple commented lines inserted to make
modifying the service to increase worker threads or batch size simple to do.

IMG022 - This is a sample of stressd-2.service which we’ll use to increase the input load on
the SUT. Using a symlink in /opt/stress helped keep the config more readable, and we
include multiple commented out ExecStart settings so we can change the batch size and
worker threads as needed.

 You maybe also noticed bash script in IMG021 called push.sh ; this is just a wrapper to a one liner
that copies the relevant service file to /etc/systemd/system, runs systemctl daemon-reload and then restarts
the stressd (or stressd-2, stressd-3) service. We can then start up each service and monitor the behavior of
our event rate.

IMG023 - Shortly after starting up our additional stressor services (all using the same
config, with batch size 125 and 2 workers) we see that we indeed pushed our event rate
to near 60K

So not quite the result we anticipated. We increased our event rate about 15-20K over previous levels, but
we’ve leveled out at about 60K. The first thing we check is whether or not packet drops are incrementing
on the lo interface (where SUT logstash is listening and where our stressors are shipping) but we see that
drops have not incremented beyond the last count we saw (135182). So where is the bottleneck?

1. It’s unlikely that our bottleneck is the stressors, we’ve already proven that one stressor using
generator input plugin and UDP output is capable of 40-50K EPS

2. It’s possible that we’re hitting a cap on the throughput of SUT logstash with UDP input and our
current configuration (i.e. maybe a TCP input could take things higher, or maybe there’s some tuning
we could do at the input or JVM side). 24

3. It’s possible that the bottleneck is at the Elasticsearch end. Recall our lab is only running 1 local
elasticsearch index, which we have yet to touch. We could try tuning elasticsearch for indexing
speed. 25

4. We could minimize disk ops in our pipeline (we’re using the metrics filter to meter events still, and
based on whether or not an event is from the stressor or is a metric event, we’re writing to disk and
outputting to a different index).

 There are also other things to consider; for example, using persistent queues for a pipeline is likely to slow event rate down (have to write queue 24

to disk instead of in memory queue). We’re also still dumping some events to file (/var/log/syslog.metrics.json) which could impact performance.

 ELASTIC; Tune for indexing speed: https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html25

https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html

IMG024 - Where’s our bottleneck? It could be at the SUT node, but it could also be at the
Elasticsearch side. It seems unlikely the that the stressor/s would be the bottleneck since
we’ve already seen high event rates with 1 stressor.

So which should we tackle first ? It’s up to you… we decided to switch up the TCP input. Accepting
syslog over TCP isn’t uncommon. It’s not something we see a lot of but nonetheless, it can and will be
done eventually. We’ll gloss over setting up the stressors to ship to TCP instead of UDP. We’ve already
laid the groundwork for making modification of the stressors pretty straightforward. On the next page is
a screenshot of our /opt/stress layout for reference as well as our little helper scripts. A few points
before you modify the stressor config

- Be sure that the tcp output on the stressors uses either the plain or json_lines codec; the default
(json) will just write a continuous non-delimited stream of events (i.e. ‘{“dude”:1}{“dude”:2}’ to the SUT
which Logstash will try to read as 1 massive event or events, which will continue to eat up the heap until
the heap is exhausted resulting in an Out Of Memory (OOM) error. But try it if you want to see a node
crash.

IMG025 - Tree structure of /opt/stress as well as our one-liner helper scripts to copy edited
service files to /etc/systemd/system and start / stop / restart all 3 stressor services.

Fortunately, switching to TCP input at the SUT did result in increased EPS (almost 100K!!!…. almost).
Not quite the 3x increase that we had hoped for but pretty impressive nonetheless. Each of the stressors
was running a default batch size and 2 workers. The SUT was using default batch size and 48 workers
(default to # of system CPU). The event rate graphs are listed on the next page.

 Where do we go from here? At this point it’s unclear where the bottleneck is. The fact that we saw
an event rate increase to near 100K with multiple stressors added to the fact that we’re still not seeing
drops at the NIC seems to indicate that the bottleneck is somewhere downstream from the stressors.
Consider the following.

1. If the bottleneck is at the SUT (i.e. we’ve reached the max event rate for 1 logstash instance) then
using the same config, on a second SUT process should push push beyond 100K events per second
(we could try this on our lab node, but we may run into resource contention, recall that SUT logstash
is using 48 workers, standing up a second would have 96 total workers or 2 * CPU, in addition to the
threads used by stressors, elasticsearch, and other system process)

2. If the bottleneck is at Elasticsearch, then we should see an event rate beyond 100K with addition of a
second node.

The easiest test is the addition of second logstash node which is left as an exercise for the reader .

IMG026 - Switching the SUT to use TCP input yielded event rates near 100K/sec.

2. PARTING WORDS

As is often the case, our time together has come to a close much to soon. Hopefully it wasn’t a
waste of the readers time. If so, feel free to flame the comments section of the site. Alternatively,

a strongly worded letter is accepted, but only if you use ChatGPT to have it written in
Shakespearean style so we’re entertained. All jokes aside, happy logging and good wishes.

FIN

	1. SYSLOG
	SYSLOG LAB - 001
	SYSLOG LAB - 002
	SYSLOG LAB - 003
	SYSLOG LAB - 004

	2. PARTING WORDS

